skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Manke, Ruchira"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Deep Learning (DL) is a class of machine learning algorithms that are used in a wide variety of applications. Like any software system, DL programs can have bugs. To support bug localization in DL programs, several tools have been proposed in the past. As most of the bugs that occur due to improper model structure known as structural bugs lead to inadequate performance during training, it is challenging for developers to identify the root cause and address these bugs. To support bug detection and localization in DL programs, in this article, we propose Theia, which detects and localizes structural bugs in DL programs. Unlike the previous works, Theia considers the training dataset characteristics to automatically detect bugs in DL programs developed using two DL libraries,KerasandPyTorch. Since training the DL models is a time-consuming process, Theia detects these bugs at the beginning of the training process and alerts the developer with informative messages containing the bug’s location and actionable fixes which will help them to improve the structure of the model. We evaluated Theia on a benchmark of 40 real-world buggy DL programs obtained fromStack Overflow. Our results show that Theia successfully localizes 57/75 structural bugs in 40 buggy programs, whereas NeuraLint, a state-of-the-art approach capable of localizing structural bugs before training localizes 17/75 bugs. 
    more » « less
    Free, publicly-accessible full text available July 31, 2026
  2. While deep learning (DL) has permeated, and become an integral component of many critical software systems, today software engineering research hasn't explored how to separately test data and models that are integral for DL approaches to work effectively. The main challenge in independently testing these components arises from the tight dependency between data and models. This research explores this gap, introducing our methodology of mock deep testing for unit testing of DL applications. To enable unit testing, we introduce a design paradigm that decomposes the workflow into distinct, manageable components, minimizes sequential dependencies, and modularizes key stages of the DL, including data preparation and model design. For unit testing these components, we propose modeling their dependencies using mocks. In the context of DL, mocks refer to mock data and mock model that mimic the behavior of the original data and model, respectively. This modular approach facilitates independent development and testing of the components, ensuring comprehensive quality assurance throughout the development process. We have developed KUnit, a framework for enabling mock deep testing for the Keras library, a popular library for developing DL applications. We empirically evaluated KUnit to determine the effectiveness of mocks in independently testing data and models. Our assessment of 50 DL programs obtained from Stack Overflow and GitHub shows that mocks effectively identified 10 issues in the data preparation stage and 53 issues in the model design stage. We also conducted a user study with 36 participants using KUnit to perceive the effectiveness of our approach. Participants using KUnit successfully resolved 25 issues in the data preparation stage and 38 issues in the model design stage. Our findings highlight that mock objects provide a lightweight emulation of the dependencies for unit testing, facilitating early bug detection. Lastly, to evaluate the usability of KUnit, we conducted a post-study survey. The results reveal that KUnit is helpful to DL application developers, enabling them to independently test each component (data and model) and resolve issues effectively in different stages. 
    more » « less
    Free, publicly-accessible full text available April 26, 2026